Incorporating Cost-Benefit Analyses into Software Assurance Planning

Martin S. Feather, Burton Sigal, Steven L. Cornford
Jet Propulsion Laboratory, California Institute of Technology

4800 Oak Grove Drive, Pasadena, CA 91109, USA
Martin.S.Feather@Jpl.Nasa.Gov
Burton.Sigal@Jpl.Nasa.Gov
Steven.L.Cornford@Jpl.Nasa.Gov

Abstract

The objective is to use cost-benefit analyses to identify,
Jor a given project, optimal sets of software assurance
activities. Towards this end we have incorporated cosi-
benefit calculations into a risk management framework.
The net result is the capability to rapidly explore the costs
and benefits of sets of assurance decisions.

We describe the cost-benefit aspects of our framework ,
and demonstrate them on a small illustrative example. We
then address the issues raised by seeking to apply this
approach to software assurance planning for large-scale
software development efforts.

1. Introduction

Software assurance is the planned and systematic set of
activities that ensures that software processes and products
conform to requirements, standards, and procedures.
Examples of such activities are: code inspections, unit
tests, design reviews, performance analyses, construction
of tracability matrices, etc.

In practice, software development projects have only
limited resources (e.g., schedule, budget and availability
of personnel) to cover the entire development effort, of
which assurance is but a part. Projects must therefore
select judiciously from among the possible assurance
activities. In order to do so, they need means to
quantitatively assess the cost/benefit of a suite of
assurance activities as applied to their specific project. The
ability to so is essential to allow:

e estimation of not just budget and schedule, but also

quality and risk,

e determination of the optimal allocation of their
limited resources,

e identification and evaluation of tradeoff
opportunities (e.g., give up some functionality in
order to be able to afford to achieve a high quality
for the reminder).

In optimizing the allocation of limited resources, the

Patrick Hutchinson
Wofford College,
429 N. Church St.
Spartanburg, SC 29303
hutchinsonrp@wofford.edu

goal might be to minimize risk with the available
resources, or to reduce risk to an acceptable level,
minimizing the resources needed to do so. In either case, it
is an optimization problem to trade costs (of performing
activities) and benefits (the value of risk reduction).

Cost-benefit analyses of individual activities have been
reported (e.g., reinspections - [1]; regression testing — [4]).
Studies of overall process improvement also exist (e.g., [8]
that relate software defects, productivity, development
cycle time and effort estimation to process ratings akin to
the Software Engineering Institute (SEI)’s Capability
Maturity Model (CMM). However, the middle ground, of
quantitatively planning the suite of activities to apply to a
given project, is relatively under explored. This middle
ground is the focus of our ongoing efforts.

We have incorporated the key elements of cost-benefit
calculations into a risk management tool. The net result is
the ability to study the implications of multiple
interrelated decisions on selection of software assurance
activities.

Our starting point is a NASA-developed risk
management framework, the effect Detection and
Prevention (DDP) tool for risk assessment, planning and
management [3]. DDP deals with requirements, risks and
risk mitigations. Risks are quantitatively related to
requirements, to indicate how much each risk, should it
occur, impacts each requirement. Mitigations are
quantitatively related to risks, to indicate how effectively
each mitigation, should it be applied, reduces each risk. A
set of mitigations achieves benefits (requirements are met
because the risks that impact them are reduced by the
selected mitigations), but incurs costs (the sum total cost
of performing those mitigations). The main purpose of
DDP is to facilitate the judicious selection of a set of
mitigations, attaining requirements in a cost-effective
manner. DDP has the capability to represent and reason
simultaneously with a multitude of mitigations, and their
effectiveness at reducing multiple risks. In actual usage,
DDP application sessions have dealt with ranges of 50 —
150 each of requirements, risks and mitigations.

The remainder of this paper is organized as follows:

Section 2 — describes the cost-benefit calculations we
have incorporated into the DDP framework.

Section 3 — demonstrates these cost-benefit calculations
on a small illustrative example.

Section 4 — outlines the issues raised by seeking to
apply this to software assurance planning for large-scale
development efforts, and the approaches we are taking to
address these issues.

Section 5 — conclusions.

2. Cost-benefit calculations in DDP

Motivated by the desire to aid software assurance
planning, we have extended DDP’s cost-benefit aspects in
two key ways:

e classifying mitigations into three categories —

preventions, detections, and alleviations, and

e associating with mitigations the time phase (e.g.,

the design phase of a project) at which those
mitigations are applied.

2.1. Categories of mitigations: preventions,

detections and alleviations

Mitigations are classified into the following three
categories:

e Preventions — assurance activities that reduce the
likelihood of problems occurring, e.g., training of
programmers reduces the number of mistakes they
make. Preventions incur a cost of performing the
prevention activity.

e Detections — assurance activities that detect problems,
with the assumption that detected problems will be
corrected, e.g., unit testing detects coding errors
internal to the unit. The net effect of assuming that
detected problems will be corrected means that
detections effectively reduce the likelihood of those
problems remaining present in the final product.
Detections thus incur two costs: that of performing
the detection activity, e.g., performing the unit test,
and that of repairing the problems detected, e.g.,
correcting a problem found during unit test. Note that
the cost of performing a detection is a function of the
detection itself, while the cost of repairing a problem
it uncovers is a function the problem, no matter how it
is detected. DDP computes the total cost by summing
the detection’s performance cost and the problem
repair costs for the expected number of problems that
it detects.

e Alleviations — assurance activities that decrease the
severity of problems should they occur, e.g.,
programming a module to be tolerant of out-of-bound
values input to it from another module. Alleviations
incur a cost of performing the alleviation activity.

2.2. Time phase of mitigations

Mitigations are associated with the time phase (e.g., the

design phase of a project) at which they would be applied.
For this purpose, time phases form an ordered set, e.g, a
project’s lifecycle might be subdivided into the
“requirements phase”, “design phase”, “coding phase” and
“test phase. We allow the user to define the elements of
this ordered set. Some obvious examples of mitigations,
and how they might be associated with time phases, are:

e requirements inspection — requirements phase

e design review — design phase

e code walkthrough — coding phase

e unit test — test phase

DDP’s cost and benefit calculations take into account
the time phasing of mitigations by splitting those
calculations into steps, one for each time phase. In a given
step, only the mitigations that are both selected for
application and associated with that step’s time phase are
applied to effect reductions of likelihoods and/or severity
of problems. The first stage (in our simple example, the
“requirements phase”) starts with all the possible problems
initialized to their a-priori likelihoods (i.e., the likelihood
of the problem occurring were nothing done to inhibit it)
and with their impacts on requirements at their maximal
(unalleviated) strengths. Thereafter, each successive phase
inherits the problems in the state in which they emerge
from the previous phase.

One consequence of this is that the DDP model can
support project planning that must take into account the
phase in which costs are incurred. In practice, large
development efforts that span several years may well have
their budget allocated on a yearly basis.

Another consequence is that the DDP model is capable
of representing the phenomenon of cost of corrections
escalating later in the development lifecycle. For example,
it is often observed that a requirement flaw detected and
repaired at requirements time costs (say) 10 times as much
to repair if only detected and then repaired at coding time,
100 times as much at test time, etc. Such observations are
used to argue for increased emphasis on early-lifecycle
activities.

The DDP model accommodates this phenomenon by
separating the cost of detecting a problem from the cost of
repairing it, and furthermore, by allowing the cost of
repair to be dependant on the time phase in which the
repair is performed. DDP’s cost calculation works as
follows: when a mitigation detects the problem, it does so
in the time phase associated with the mitigation. Assuming
the problem is then repaired in that same time phase, the
calculation of the cost of its repair takes into account the
time phase itself. We therefore require that each problem
has associated repair costs, one for each time phase, on
which to base this calculation.

3. Demonstration of cost-benefit calculations
on small illustrative example

The following example is based on the scenarios
discussed by Gary Gack on the “Defect Tracking +

Inspections = $ in Your Pocket” portion of his website
(http://'www iteffectiveness.com/defecttracking. html).

Gack considers the case of a 50,000 lines of code
system containing 2500 defects (50 per KLOC). Gack
presumes the compiler detects half the defects, leaving the
remaining 1250 to be detected by other means. He
presents four scenarios:

1. perfect walkthroughs/inspections

2. perfect testing

3. typical MIS organization’s testing

4. aggressive inspections and structured testing

He subdivides activities into three phases, Inspections
& Walkthroughs, Testing, and Production, for which he
assumes the relative costs of finding and fixing defects to
be 1:12:40 (a middle ground between the various ranges
reported in published data). Scenarios 1 & 2 are idealistic
scenarios to illustrate the calculations involved.

Scenario 1: perfect walkthroughs/inspections: these
catch all defects that escaped the compiler, so the relative
cost is $1,250.

Scenario 2: perfect testing: this catches all defects that
escaped the compiler, so the relative cost is $15,000.

Scenario 3: typical practice: typical testing is assumed
to catch 75% of the defects that escaped the compiler,
leaving the remaining 25% to be caught by customers, so
the relative cost is nearly $24,000.

Scenario 4: aggressive use of inspections and structured
testing:

e design inspections catch 30% of the defects that
escaped the compiler
e carefully chosen code inspections catch 80% of
the defects emerging from the design inspections
e structured testing catches 70% of the defects
emerging from the code inspections phase
e the (relatively few) remaining defects are
detected by the customers.
Gack’s calculations show the value of this approach,
which allows only a modest number of defects (slightly
more than 50) to remain for the customers to detect, and
yet has a small total relative cost of approximately $5,000.
This occurs when an earlier-phase activity (e.g,
inspection) is selected, and leads to the early discovery,
and therefore inexpensive correction, of problems that
would otherwise be uncovered only in later phases (e.g,
testing) when repair costs are higher. Cost considerations
such as these are also discussed in [5].

3.1. DDP representation

To represent Gack’s scenarios in DDP, we define a
requirement “Defect-free code”, a problem: “Coding
defects” and, for each of the defect detection activities he
discusses, a detection-type mitigation. For ease of
understanding, we organize the mitigations into a tree
structure whose parent categories correspond to each of
the major time phases.

The DDP tree, extracted from a screenshot, is shown

next. The check boxes alongside each line control whether
or not the corresponding mitigation is active. This feature
allows us to turn on and off the various mitigations so as

& 1:Coding and compilation time
. M 1.1:Compiler
= 2Inspection time
[0 2.1:Perfect walkthroughs/inspections
wp] 2.2:Design ingpections
: --[¥] 2.3:Code Inspections

~M 3Test time
~[J 3.1:Typical MIS testing
g 3.2:Structured Testing
: -0 3.3:Perfect testing
= 4Production time

o [# #.1:Users’ Bug Reports
to quickly recreate any of Gack’s scenarios (and many
others, of course). Each time we do so, DDP automatically
recomputes the defect detection rates and the costs.

We define four time values: “Coding and compilation”,
“Inspection time”, “Test time” and “Production time”.
Each mitigation is associated with the appropriate such
time value.

The effectiveness of each mitigation against the
problem is expressed in DDP’s effectiveness table, shown
below. For example, Gack’s code inspections that catch
80% of the defects remaining at that point are represented
by the “Code inspections” row with a 0.8 effectiveness
value. If we were to change these values, DDP would
automatically recompute costs and benefits on the basis of
the new values.

| Coding
{defects

45

{}i:ndmg and
mmpilntmn hme

~ |Perfect
~ |walkthroughs/i nsf_ecttm

[—]inspécffﬁn time ‘:g(g’slgn ms‘plajctiong,

ypical MIS ,,;:esﬁng,. |
, Sﬁumred Tes:mg 0.?
Perfer:t testmg T

{?}?mdy(iﬁgﬁ time

Users Bug Reparts? L

Gack does not distinguish between cost of detection
and cost of repair. One simple way to recreate his
calculations is therefore is to associate his costs with just
the repair cost of the “Coding defects” problem, assigning
it to have the values 0, 1, 12 and 40 for respective time
phases. Again, DDP would automatically recompute costs
and benefits should we make changes to these values.

3.2. DDP calculations

We are able to quickly recreate all four of Gack’s
scenarios by checking/unchecking the appropriate
mitigations. The tree shown earlier showed his 4™ scenario
of a suite of aggressive inspections and structured testing.
To recreate his 2™ scenario of perfect testing, we would
simply check and uncheck boxes to arrive at the tree
shown below.
Z-~[¢] 1:Coding and compilation time
. e 1.1:Compiler
Z:Inspection time

-0 2.1:Perfect walkthioughs/ingpections
[2.2:Design inspections

iew[] 2.3:Code Inspections

3:Test time

~-[0 3.1:Typical MIS testing

‘ 3.2:5tructured Testing

“ow[g] 3.3:Perfect testing

4:Production time

4_1:Users' Bug Reports

DDP automatically computes the resultant defect rates
and costs by phase. For visualization of multiple scenarios
side by side, ee export the computed values in comma-
delimited form, and use Excel to chart them. The results
are shown below, where all the data values of this chart
are those computed by DDP.

The vertical “defects” axis shows the

1500 x&
defects 4590 ‘
500

number of defects.

phase 1 2 3 4
S1 2500 1250 0 0
S2 2500 1250 1250 0

S3 2500 1250 1250 312.5
S4 2500 1250 175 52.5

OO OO OL

The “phase” axis shows the series of time phases (1 =
initially 2 = compilation, 3 = inspection, 4 = testing, 5 =

production).

The “scenarios” axis shows Gack’s four scenarios (S1
= perfect testing, S2 = perfect walkthroughs/inspections, 3
= typical MIS testing, 4 = aggressive inspections and
structured testing).

In all four scenarios, the compiler catches 50% of the
initial defects, hence all the columns in row 1 drop
identically, from height 2500 to height 1250.

S1, the row of white columns towards the front, is
Gack’s Scenario 1. Perfect walkthroughs/inspections catch
all defects that escape the compiler, so the column drops
to zero height from phase 2 to phase 3.

S2, the row of light gray columns, is Gack’s Scenario
2. There is no inspection time activity, so the defect
columns in phases 2 and 3 are the same height. Perfect
testing then catches all the remaining 1250 defects, so in
phase 4 the column drops to zero height.

S3, the row of dark gray columns, is Gack’s Scenario
3. Imperfect testing catches 75% of the 1250 defects that
had escaped the compiler (as in Scenario 2, there is no
inspection time activity), so the column drops from height
1250 to height 312.5 in phase 4. These remaining defects
are caught by customers in phase 5.

S4, the row of black columns towards the back, is
Gack’s aggressive use of inspections and structured
testing. Of the 1250 defects that escaped the compiler,
inspection-time activities catch all but 175. Thereafter,
structured testing catches all but 52.5, the number of
defects making their way through to the customers to
discover.

The escalating contribution of repair costs is shown
vividly in the chart below:

4

s2 g
scenario S1\\

phase1 2 3 4 5
S1 0 0 1250 1250 1250
S2 0 0 0 15000 15000
S3 0 0 0 11250 23750
S4 0 0 1075 2545 4645

S3, the “typical” scenario, shows the high cost
contribution of leaving defect detection until production
time. Conversely, S4, the “aggressive” scenario that
invests inspection effort early in the lifecycle, accumulates
costs starting in phase 3, but because this results in fewer
defects escaping to later stages, these costs are minor in
comparison to the savings by the end. Note also that S3
results in a far lower final cost than S2, the “perfect
testing” scenario. Gack stresses the point that inspections
are the most cost effective improvements that most
organizations can make.

4. Large scale software assurance planning

Software assurance planning for large-scale safety-
critical projects typically involves consideration of dozens,
possibly hundreds, of assurance-related activities.
However, from project to project, many of the same
software development risks will apply, and many of the
same assurance-related activities will serve as risk
mitigations. Hence it is both worthwhile and practical to
pre-populate DDP with data pertinent to software
development — risks that recur across many software
development efforts, assurance-related activities that
mitigate those risks, and estimates of how effective those
mitigations reduce risk.

In addition to pre-populating DDP with relevant
information, we collaborate with another NASA assurance
planning tool to provide us an initial recommendation of
which activities to perform.

We discuss this collaboration next, and then revisit the
issue of determining mitigation effectiveness.

4.1. The DDP / Ask Pete collaboration for
software assurance planning

Ask Pete (http://tkurtz.grc.nasa.gov/pete) from NASA
Glenn Research Center is another effort that supports
software assurance planning. Ask Pete uses a user-friendly
electronic interview to elicit overall project characteristics.
Behind the scenes, relevant portions of this data are
automatically fed into COCOMO II to yield cost and
schedule estimates, and into other matrices to yield control
level determinations and IV&YV estimates. The COCOMO
estimates, and other portions of the user-provided data, are
then combined with institutional practices and policies (for
example, ISO 9001, CMM and site-specific principles),
yielding estimates of cost, schedule, and risk; and plans
for the development effort, oversight and risk mitigation
while conducting software development.

We are involved in an ongoing collaboration with the
Ask Pete project to jointly support software assurance
planning [7]. Briefly, this joint approach has three main
steps:

1. Ask Pete interviews the user to ascertain the
characteristics of the project, and on the basis
of this makes the first cut at a recommended
set of assurance activities

2. DDP relates the recommended activities to the
software development risks they mitigate, thus
allowing for risk- and cost- based tuning and
customization of the recommendations.

3. Ask Pete takes the recommendations as
revised by DDP, and generates the final
reports (including listing the revisions).

In order to support this, we pre-populated DDP with
information pertinent to software assurance planning, as
follows:

Mitigations: DDP is pre-populated with mitigations,
namely the universe of all of Ask Pete’s assurance
activities (close to 200 in total). When Ask Pete
recommends a set of assurance activities, the
recommendation is automatically passed to DDP, causing
the corresponding mitigations to be checked (akin to the
way we checked particular mitigations to model Gack’s
various scenarios, in the earlier section).

Risks: DDP is pre-populated with risks pertinent to
software development activities. For this purpose, we use
a taxonomy of software risks from the Software
Engineering Institute (SEI), namely those in the report
[11]. ,
Effectiveness: DDP is pre-populated with a set of
values that say how effective each mitigation is at
reducing each risk. We lack the data founded on
experience to provide these values, so we use experts’
estimates of what they might be.

4.2. Determining the effectiveness of risk

mitigations

As mentioned above, we lack experiential data, and so
make do with experts’ estimates of the effectiveness of
software assurance activities at reducing software
development risks. We faced the same need in an earlier
study [2], where we had used the Capability Maturity
Model (CMM) for software [10] to suggest the set of
mitigation activities. There too, we found the need to
make estimates of the effectiveness of these activities.
Indeed, we were unable to locate any description of even
which KPAs addressed which risks, let alone by how
much.

Of necessity, our approach to large scale software
assurance planning is founded upon these estimates. This
raises some concerns. In this section we argue that our
approach is beneficial nevertheless, describe the steps we
are taking to further validate it, and finally outline our
hopes for being able to replace estimates with data based
on evidence.

DDP has been successfully applied to advanced
technologies (hardware and/or software), where the focus
has been on increasing the infusion rates of these
technologies by identification and mitigation of risks prior
to delivery to a project [3]. In these kinds of applications,
DDP is used to gather and combine data from a group of
experts. Given that the subjects of these studies have been

advanced technologies, it is common for the data those
experts provide to be estimates (e.g., of the effectiveness
of mitigations at reducing risk!). Nevertheless, the studies
have been revealing. Often it was seen that substantial
efforts in non-technology development areas were
necessary to sufficiently mature the product prior to
technology pull, and funding could now be sought (and
justified) in non-R&D programs to get this work done.
The opposite was true as well where it was realized that
the R&D efforts currently being worked were not
necessarily the highest priority, and a course correction
was necessary. The general point is that when a
disciplined process is followed to gather and combine
estimates from experts, it is often possible to draw
substantial benefit from that information.

In collaboration with Tim Menzies we are pursuing an
approach that, if successful, will indicate the sensitivity of
DDP’s answers to its data. For a particular application of
DDP, we would ascertain the degree to which its answers
would be changed (or not) were changes made to the data
(estimates) from which they were derived. Menzies’
suggestion is to make random variations around the
supplied values, and derive sensitivities from this. He has
a machine-learning based approach that appears successful
at identifying key factors in surprisingly large models [9]
from DDP data.

Lastly, we are looking to the broader software
engineering community to see what data they have
gathered on the effectiveness of software assurance
activities. During the summer of 2001 we performed a

Sourc

es
[Biff,
2000]

Formal Detection
Requirements
Inspection: a process
for the verification of
software
requirements
documentation by a
team of inspectors
incl. Defect detection
meeting, and repair.

data, and whether we could incorporate such data into the
DDP framework. In areas of inspection and testing, data
does seem to be available. For example, we located the
paper ““Investigating the cost-effectiveness of
reinspections in software development” [1] from its
promising title. This paper turned out to hold data on the
effectiveness of requirements inspections and
reinspections. We note that ongoing efforts of the
consortium http://www.cebase.org may gather additional
data. ‘

We collected the data we found into a spreadsheet
before attempting to incorporate into DDP. The
spreadsheet serves as a way to organize the data we find
but leave it in its original form (e.g., retain the exact way
the source describes the cost). An example fragment of
our spreadsheet appears in the table, based on the data
extracted from the aforementioned paper.

When we tried to incorporate the data into DDP, we
rarely found all the aspects of information that we require.
For example, the table below indicates that the Cost
figures do not differentiate between cost of detection and
cost of repair.

It seems that for the foreseeable future we will have to
continue to rely predominantly on estimates of effectives
values for software assurance activities. Our current
approach has DDP pre-populated with estimates of the
generic effectiveness values. In a given DDP application,
we rely on the experts at hand to scrutinize these generic
values, tailoring them as they deem appropriate to the
problem at hand. The success of DDP when applied to
identification and mitigation of risks in advanced

Requirements

Phase

cost in terms of|
person hours to do
an inspection for the
given document
mean 51.4 hours
std.dev. 15.7 for a 35
page document with
80+ major defects.
These figures appear
to include a repair
phase. The per page
cost is 1.47 hours.

gives data from
thity teams with a
mean of 45.2%, std
dev. 16.6% of errors

detected. actual
results range from
8% to 74%. Wil
impact Requirements
risks.

[Biffl, Detection

2000]

Formal
Requirements
Reinspection: Same
process as
Inspection, but is
performed after the
errors reported by the
first inspection are
fixed

Requirements

Phase

cost in terms of|
person hours to do a
reinspection for the

given document
mean 35.5 hours
std.dev. 11.3 for a 35
page document

which had 80+ major
defects before the
first inspection.
These figures appear

gives data from
thirty teams with a
mean of 36.6%, std
dev. 15.1% of errors
detected. actual
results range from
5% to 69%. Wil
impact Requirements
risks.

technologies (hardware and/or software) suggests that this
approach has considerable value.

5. Conclusions

We have described the capabilities for cost-benefit
calculations that we have embodied within a risk
management tool. These capabilities allow us to
differentiate risk mitigations into three categories:
preventions, detections and alleviations. This distinction
permits the calculations to take into account important
phenomena such as the escalating cost of bug fixes as
projects progress through their lifecycle. By embodying
these capabilities into the DDP risk management tool, we
are able to scale them to handle dozens, and even
hundreds, of risks and mitigations. For software assurance
planning in large-scale projects, we collaborate with
another software assurance planning tool whose output
serves as a good first cut at a suitable suite of assurance
activities. Pre-populating our tool with risks and
mitigations that recur in many software development
efforts allows a mode of use in which experts need not
start from scratch, but can instead scrutinize this
preformulated information, and tailor it as needed to the
problem at hand. Key to our approach is to quantitatively
state the effectiveness of mitigations on the risks they
mitigate (i.e., state how much they mitigate those risks).
We performed a pilot study to locate date on which to base
these effectiveness values, but concluded that for the
foreseeable future we must continue to rely predominantly
on experts’ estimates to serve as these values. Successes
with this approach based on experts’ estimates suggest
that this is a viable and worthwhile approach.

Preceding sections have discussed some related work.
In addition, we mention the following:

We see some relationship to the cost/benefit work of
[6]. 2-D graphical plots of requirements, where the
dimensions indicate value of attainment against cost of
attainment, appear to serve as guides to software release
planning. Our work involves risk as the key factor that
underlies all our calculations, and in this respect is quite
different.

Risk estimation approaches (e.g., fault tree analysis,
baysian methods) appear very well suited to the
assessment of a single design. However, our application is
to the planning of entire, often quite large, suites of
mitigations, were the driving concern is the cost-benefit-
guided selection from among a large set of such
mitigations.

6. Acknowledgements

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Acronautics and Space Administration. Reference herein
to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does

not constitute or imply its endorsement by the United
States Government or the Jet Propulsion Laboratory,
California Institute of Technology. Discussions with Julia
Dunphy (JPL), John Kelly (JPL), Tim Kurtz (NASA
Glenn), Tim Menzies (Univ. British Columbia) and Peter
In (Texas A&M) have been most useful in helping us
formulate our ideas.

7. References

[1] S. Biffl, B. Freimut and O. Laitenberger. “Investigating the
cost-effectiveness of reinspections in software development”,
23 Int. Conference on Sofiware Engineering, 2001, pp. 155-
164.

[2] S.L. Cornford, M.S. Feather, J.C. Kelly, T.W. Larson, B.
Sigal, J. Kiper. “Design and Development Assessment”,
Proceedings of the 10th International Workshop on Software
Specification and Design, San Diego, California: 105-114,
November 2000.

[3] S.L. Cornford, M.S. Feather & K.A. Hicks. “DDP — A tool
for life-cycle risk management”, IEEE Aerospace Conference,
Big Sky, Montana, Mar 2001, pp. 441-451.

[4]. T. Graves, M. Harrold, J. Kim, A. Porter and G. Rothermel.
“An Empirical Study of Regression Test Selection Techniques”.
20" Int. Conference on Software Engineering, 1998, pp. 267-
273.

[5]. C. Kaner. “Quality Cost Analysis: Benefits and Risks”,
Software QA Vol 3, #1, p. 23, 1996.

[6] J. Karlsson & K. Ryan. A Cost-Value Approach for
Prioritizing Requirements. IEEE Software, Sept./Oct.
1997, 67-74.

[7] T. Kurtz & M.S. Feather. “Putting it All Together: Software
Planning, Estimating and Assessment for a Successful Project”,
in Proceedings of 4th International Software & Internet Quality
Week Conference, Brussels, Belgium, Nov 2000.

[8] F. McGarry, S. Burke & B. Decker. “Measuring the impacts
individual process maturity attributes have on software
products”, in Proceedings, 5” International Software Metrics
Symposium, 1998, pp. 52-60.

[91 T. Menzies & Y. Hu. “Constraining Discussions in
Requirements Engineering via Models”, [* [International
Workshop on Model Based Requirements Engineering, San
Diego, California, Dec 2001.

[10] Mark C. Paulk, Bill Curtiss, Mary Beth Chrissis, Charles
V. Weber. Capability Maturity Model for Software, Version 1.1.
Technical Report CMU/SEI-93-TR-024, Software Engineering
Institute, Carnegie Mellon University, February 1993,

[11] F. Sisti & J. Sujoe. “Software Risk Evaluation Method
Version 1.0” Technical Report CMU/SEI-94-TR-019, Software
Engineering Institute, Carnegie Mellon University, 1994.

